Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Free Radic Biol Med ; 210: 367-377, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052276

RESUMO

The pathogenesis of Autoimmune Hepatitis (AIH) is closely associated with perturbations in iron ion metabolism, during which Stimulator of Interferon Genes (STING) plays an important role. However, the precise regulatory mechanism remains elusive. In this study, we investigated the relationship between iron dysregulation and STING activation in Concanavalin A (ConA)-induced AIH liver injury. STING knockout (STING-/-) mice and AAV (Adeno-Associated virus)-Sting1-RNAi-treated mice were involved and subjected in AIH. We observed that increased iron dysregulation was linked with STING activation, but this effect was effectively reversed by the administration of iron chelating agent Desferoxamine (DFO) and the antioxidant Ferrostatin-1 (Fer-1). Notably, the iron transport protein Transferrin (TF) and Transferrin Receptor (TfR) exhibited significant accumulation in AIH along with upregulated expression of ferritin protein. Additionally, the deficiency of STING reduced hepatic iron accumulation, mitigated oxidative stress, and attenuated macrophage activation during ConA treatment. Furthermore, liver-specific knockdown of STING using AAV-Sting1-RNAi significantly ameliorated liver iron dysregulation and oxidative stress response induced by Kupffer cells (KCs). KC-derived STING exacerbates liver damage severity in AIH through promoting disturbances in hepatic iron ion metabolism as well as oxidative stress response. These findings provide valuable insights into the pathogenesis of AIH and may pave the way for potential therapeutic strategies targeting STING and iron metabolism in the future.


Assuntos
Hepatite Autoimune , Fígado , Animais , Camundongos , Concanavalina A/toxicidade , Concanavalina A/metabolismo , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/patologia , Inflamação/metabolismo , Células de Kupffer/metabolismo , Fígado/patologia
2.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833954

RESUMO

Acute hepatitis (AH) is a common liver disease with an increasing number of patients each year, requiring the development of new treatments. Hence, our work aimed to evaluate the therapeutic effect of Oryza sativa L. indica (purple rice) seed coat on concanavalin A (ConA)-induced AH and further reveal its potential mechanisms. Purple rice seed coat extract (PRE) was extracted with hydrochloric acid ethanol and analyzed through a widely targeted components method. We evaluated the effects of PRE on AH through histopathological examination, liver function, gut microbiota composition, and the intestinal barrier. The potential targets of PRE on AH were predicted by bioinformatics. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining, and corresponding kits were used to investigate PRE effects on predicting targets and associated signaling pathways in AH mice. In AH model mice, PRE treatment increased transformed mouse 3T3 cell double minute 2 (MDM2) expression to inhibit apoptosis; it also markedly downregulated protein kinase C alpha (PKCα), prostaglandin-endoperoxide synthase 1 (PTGS1), and mitogen-activated protein kinase 1 (MAPK1) activity to alleviate inflammation. Thus, PRE treatment also recovered the intestinal barrier, decreased the lipopolysaccharide (LPS) levels of plasma and the liver, enhanced liver function, and improved the composition of intestinal microbiota. In general, PRE targeting MDM2, PKCα, MAPK1, and PTGS1 ameliorated ConA-induced AH by attenuating inflammation and apoptosis, restoring the intestinal barrier, enhancing the liver function, and improving the gut microbiota, which revealed that the purple rice seed coat might hold possibilities as a therapeutic option for AH.


Assuntos
Hepatite , Oryza , Humanos , Animais , Camundongos , Oryza/metabolismo , Concanavalina A/toxicidade , Concanavalina A/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase C-alfa/metabolismo , Hepatite/tratamento farmacológico , Hepatite/etiologia , Hepatite/metabolismo , Transdução de Sinais , Doença Aguda , Inflamação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
3.
Inflammation ; 46(3): 1118-1130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095260

RESUMO

Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.


Assuntos
Fígado , Nucleotidiltransferases , Camundongos , Animais , Concanavalina A/toxicidade , Concanavalina A/metabolismo , Fígado/metabolismo , Nucleotidiltransferases/metabolismo , Camundongos Knockout , Quimiotaxia de Leucócito , Camundongos Endogâmicos C57BL
4.
J Biol Chem ; 299(3): 103026, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796516

RESUMO

Autoimmune hepatitis (AIH) is a typical T cell-mediated chronic liver disease with a higher incidence in females. However, the molecular mechanism for the female predisposition is poorly understood. Estrogen sulfotransferase (Est) is a conjugating enzyme best known for its function in sulfonating and deactivating estrogens. The goal of this study is to investigate whether and how Est plays a role in the higher incidence of AIH in females. Concanavalin A (ConA) was used to induce T cell-mediated hepatitis in female mice. We first showed that Est was highly induced in the liver of ConA-treated mice. Systemic or hepatocyte-specific ablation of Est, or pharmacological inhibition of Est, protected female mice from ConA-induced hepatitis regardless of ovariectomy, suggesting the effect of Est inhibition was estrogen independent. In contrast, we found that hepatocyte-specific transgenic reconstitution of Est in the whole-body Est knockout (EstKO) mice abolished the protective phenotype. Upon the ConA challenge, EstKO mice exhibited a more robust inflammatory response with elevated production of proinflammatory cytokines and changed liver infiltration of immune cells. Mechanistically, we determined that ablation of Est led to the hepatic induction of lipocalin 2 (Lcn2), whereas ablation of Lcn2 abolished the protective phenotype of EstKO females. Our findings demonstrate that hepatocyte Est is required for the sensitivity of female mice to ConA-induced and T cell-mediated hepatitis in an estrogen-independent manner. Est ablation may have protected female mice from ConA-induced hepatitis by upregulating Lcn2. Pharmacological inhibition of Est might be a potential strategy for the treatment of AIH.


Assuntos
Estrogênios , Hepatite Autoimune , Camundongos , Feminino , Animais , Concanavalina A/toxicidade , Estrogênios/farmacologia , Linfócitos T , Hepatócitos , Fígado , Hepatite Autoimune/genética , Hepatite Autoimune/prevenção & controle , Camundongos Knockout , Camundongos Endogâmicos C57BL
5.
Microbiol Spectr ; 10(5): e0171722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972273

RESUMO

Autoimmune hepatitis (AIH) is a progressive inflammation-associated liver injury. Pyroptosis is a novel inflammatory programmed cell death wherein gasdermin D (GSDMD) serves as the executioner. Our work challenged Gsdmd-/- mice with concanavalin A (ConA) to try to unveil the actual role of GSDMD in AIH. After ConA injection, Gsdmd-/- mice exhibited more severe liver damage characterized by a lower survival rate, more extensive hepatocyte necrosis and apoptosis, and higher serum transaminase levels, indicating the protection of GSDMD in ConA-induced AIH. Furthermore, the Gsdmd-/- mice exhibited higher hepatic expression and serum levels of inflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-17A [IL-17A]) and more infiltration of macrophages and neutrophils after ConA treatment than did wild-type (WT) mice. Gsdmd-/- mice with AIH showed increased hepatic l-glutamine levels but decreased glycerophospholipid metabolites levels. L-glutamine levels showed positive correlations while glycerophospholipid metabolites showed negative associations with liver injury indexes and inflammation markers. We further observed a destroyed intestinal barrier in Gsdmd-/- mice after ConA injection as indicated by decreased transcriptional expressions of Tjp1, Ocln, Reg3g, and Muc2. ConA-treated Gsdmd-/- mice also exhibited higher serum LPS binding protein (LBP) concentrations and hepatic Tlr4 and Cd14 mRNA levels. Further fecal 16S rRNA gene sequencing demonstrated decreased relative abundances of Lactobacillus and Roseburia but increased relative abundances of Allobaculum and Dubosiella in Gsdmd-/- mice with AIH. Lactobacillus was negatively correlated with liver injury and inflammation indexes and positively associated with Ocln, Muc2, and Reg3g levels. Allobaculum was positively related to liver injury and inflammatory cytokines and negatively correlated with gut barrier indexes. IMPORTANCE Our study provides the first direct clues to the protective role of gasdermin D (GSDMD) in autoimmune hepatitis (AIH). We demonstrated that Gsdmd knockout exacerbated concanavalin A (ConA)-induced AIH in mice. It may be due to the destroyed intestinal barrier and changes in certain intestinal microbes and hepatic metabolites resulting in increased liver injury and inflammation in ConA-treated Gsdmd-/- mice. This finding suggested a nonnegligible role of GSDMD in AIH and also confirmed its physiological nonpyroptosis effects on the host. The role of GSDMD in autoimmune liver diseases or other liver diseases is complex and intriguing, deserving deep investigation.


Assuntos
Hepatite Autoimune , Animais , Camundongos , Concanavalina A/toxicidade , Glutamina/metabolismo , Glicerofosfolipídeos/metabolismo , Hepatite Autoimune/genética , Hepatite Autoimune/patologia , Inflamação/metabolismo , Interferon gama , Interleucina-17/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Pharm Biol ; 60(1): 1169-1176, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35701112

RESUMO

CONTEXT: S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE: To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS: Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS: SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS: SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Animais , Concanavalina A/toxicidade , Cisteína/farmacologia , Citocinas , Sulfeto de Hidrogênio/metabolismo , Camundongos
7.
Immun Inflamm Dis ; 10(7): e643, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759238

RESUMO

INTRODUCTION: Acute liver inflammatory reactions contribute to many health problems; thus, it is critical to understand the underlying pathogenic mechanisms of acute hepatitis. In this study, an experimental in vivo model of concanavalin A (ConA)-induced hepatitis was used. MATERIALS AND METHODS: C57BL/6 (wild-type, WT) or inducible nitric oxide synthase-deficient (iNOS-/- ) mice were injected with PBS or 15 mg/kg ConA via tail vein. Detection of liver injury by histological examination and apoptosis, and flow cytometry to detect the effect of immune cells on liver injury. RESULTS: iNOS-/-  mice had lower levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase, suggesting that they were protected against ConA-induced pathological liver injury and that iNOS participated in the regulation of hepatitis. Furthermore, iNOS deficiency was found to lower CD86 expression and suppressed the messenger RNA levels of inflammatory factors in the liver. In vitro experiments also demonstrated that iNOS deficiency suppressed the sequential phosphorylation of the mitogen-activated protein kinase pathway cascade, thereby inhibiting the M1 polarization of macrophages and consequently suppressing the transcription of inflammation factors. CONCLUSION: iNOS may contribute to ConA-induced inflammation by promoting the activation of proinflammatory macrophages.


Assuntos
Hepatite , Animais , Concanavalina A/metabolismo , Concanavalina A/toxicidade , Hepatite/etiologia , Hepatite/metabolismo , Hepatite/patologia , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(4): 302-307, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35583058

RESUMO

Objective To investigate the protective effect of metformin (Met) on acute fulminant hepatitis induced by concanavalin A (ConA) in mice and explore its mechanism. Methods Twenty-four mice were randomly divided into normal group (NC), ConA group, and Met group, with 8 mice in each group. The latter two groups respectively were gavaged with 0.2 mL normal saline and metformin (100 mg/kg) for 5 days, followed by tail vein injection of 0.1 mL ConA (25 mg/kg) to establish the acute fulminant hepatitis model, and all the mice were sacrificed 18 hours later. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TB) were detected; the pathological changes of mouse liver tissue were observed with HE staining; the macrophage infiltration in liver tissue was detected with immunohistochemistry. The mRNA of IL-1ß, IL-6 and TNF-α in liver tissue were tested with real time quantitative PCR. The number of total white blood cells (WBC) and lymphocytes in the peripheral blood were recorded and the frequency of Th17 cells in the spleen was detected by flow cytometry. The expression of apoptosis protein caspase-3 in liver tissue was observed with immunofluorescence histochemistry and the expression of AMPK and phosphorylated AMPK (p-AMPK) were detected by Western blot analysis. Results Compared with the ConA group, the Met group showed significantly decreased serum ALT, AST and TB, improved liver tissue pathology, decreased macrophage infiltration and increased content of peripheral total WBCs and lymphocytes, as well as decreased frequency of Th17 lymphocytes in the spleen. The expression of IL-1ß, IL-6 and TNF-α and apoptosis also decreased in this group, along with the increased expression of p-AMPK. Conclusion Met has a significant protective effect on acute fulminant hepatitis mice, and its mechanism may be related to the activation of AMPK signal, thus reducing the frequency of Th17 lymphocytes and alleviating the infiltration of hepatic inflammatory cells and the production of pro-inflammatory cytokines.


Assuntos
Necrose Hepática Massiva , Metformina , Proteínas Quinases Ativadas por AMP , Animais , Concanavalina A/toxicidade , Interleucina-6 , Fígado , Metformina/farmacologia , Camundongos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
9.
Mediators Inflamm ; 2022: 5766434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310452

RESUMO

4-Octyl itaconate (OI) is a novel anti-inflammatory metabolite that exerts protective effects in many various disease models. However, its function in autoimmune hepatitis- (AIH-) associated hepatic injury has not been investigated. In this study, we successfully used concanavalin A (Con A) to establish an AIH-associated liver injury model. Furthermore, we investigated the effect of OI in Con A-induced liver injury and found that OI mitigated Con A-induced histopathological damage. OI administration reduced serum levels of alanine transaminase and aspartate transaminase in Con A-treated mice and attenuated the infiltration of macrophages induced by Con A. Moreover, OI effectively inhibited the expression of proinflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and IL-1ß induced by Con A. Furthermore, OI decreased hepatocyte apoptosis and malondialdehyde levels and increased the reduced glutathione/oxidized glutathione ratio in the Con A-induced liver injury model. In addition, we found that OI inhibited Con A-induced hepatocyte apoptosis in vitro, while Nrf2 deletion eliminated this effect. Furthermore, we administrated the Nrf2 inhibitor ML385 in OI+Con A-treated mice and found that ML385 eliminated the protective effect of OI in vivo. In addition, OI inhibited Con A-induced activation of nuclear factor-kappa B (NF-𝜅B) and the expression of proinflammatory cytokines in macrophages. Therefore, OI protected mice from Con A-induced liver damage and may be associated with Nrf2 activation and NF-𝜅B inhibition. Finally, our study revealed that OI inhibited TNF-α, or supernatants from Con A-treated RAW264.7 cells induced hepatocyte apoptosis. In conclusion, our study indicated that OI alleviated Con A-induced hepatic damage by reducing inflammatory response, oxidative stress, and apoptosis.


Assuntos
Hepatite Autoimune , Animais , Concanavalina A/toxicidade , Hepatite Autoimune/tratamento farmacológico , Camundongos , Succinatos/farmacologia , Succinatos/uso terapêutico
10.
Cell Immunol ; 371: 104467, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896761

RESUMO

OBJECTIVE: To elucidate the role of the functional unknown gene C6orf120 in the pathogenesis of AIH and its mechanism of action, using C6orf120 knockout rats. METHODS: An autoimmune hepatitis model was established with 35 mg/kg intravenous injection of concanavalin A (Con A) in C6orf120-knockout (C6orf120-/-) and wild-type (WT) rats. Rats were sacrificed after administering Con A for 0, 12, and 24 h. The peripheral blood, liver, spleen, and mesenteric lymph nodes were collected for follow-up studies. RESULTS: C6orf120 knockout significantly decreased the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and improved the histological damage in Con A-induced autoimmune liver injury.Loss of C6orf120 function significantly increased the frequency of CD3+ CD161+ NKT cells in the peripheral blood, liver, and spleen; downregulated the expression of CD314 (NKG2D) in the liver, spleen, and mesenteric lymph nodes; reduced the expression of inflammatory cytokines and chemokines; and suppressed the mRNA and protein expression of Fas and FasL in the liver. Additionally, C6orf120 knockout significantly downregulated the expression of p-JAK1, p-JAK2, p-STAT1, and p-STAT3 in liver tissue. CONCLUSION: The protective effect of C6orf120 knockout against Con A-induced hepatitis may be due to the inhibition of NKT cell activation, restriction of cytokine and chemokine activities, inhibition of JAK-STAT and Fas/FasL signaling pathway activation, and reduction in liver inflammation and hepatocyte apoptosis.


Assuntos
Concanavalina A/toxicidade , Glicoproteínas/genética , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Células T Matadoras Naturais/imunologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocinas/análise , Modelos Animais de Doenças , Proteína Ligante Fas/biossíntese , Proteína de Domínio de Morte Associada a Fas/biossíntese , Técnicas de Inativação de Genes , Janus Quinases/biossíntese , Fígado/patologia , Linfonodos/patologia , Masculino , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Ratos Sprague-Dawley , Ratos Transgênicos , Fatores de Transcrição STAT/biossíntese , Baço/patologia
11.
Stem Cell Res Ther ; 12(1): 496, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503553

RESUMO

BACKGROUND: Fulminant hepatitis is a severe life-threatening clinical condition with rapid progressive loss of liver function. It is characterized by massive activation and infiltration of immune cells into the liver and disturbance of inflammatory cytokine production. Mesenchymal stem cells (MSCs) showed potent immunomodulatory properties. Transplantation of MSCs is suggested as a promising therapeutic approach for a host of inflammatory conditions. METHODS: In the current study, a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model was used to investigate the effects of transplanting human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on fulminant hepatitis. RESULTS: We showed that hWJ-MSCs effectively alleviate fulminant hepatitis in mouse models, primarily through inhibiting T cell immunity. RNA sequencing of liver tissues and human T cells co-cultured with hWJ-MSCs showed that NF-κB signaling and glycolysis are two main pathways mediating the protective role of hWJ-MSCs on both Con A-induced hepatitis in vivo and T cell activation in vitro. CONCLUSION: In summary, our data confirmed the potent therapeutic role of MSCs-derived from Wharton's jelly of human umbilical cord on Con A-induced fulminant hepatitis, and uncovered new mechanisms that glycolysis metabolic shift mediates suppression of T cell immunity by hWJ-MSCs.


Assuntos
Necrose Hepática Massiva , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Diferenciação Celular , Células Cultivadas , Concanavalina A/toxicidade , Glicólise , Humanos , Camundongos , NF-kappa B/genética , Cordão Umbilical
12.
J Pharmacol Exp Ther ; 379(2): 125-133, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34373354

RESUMO

The pharmaceutical industry and clinical trials have been revolutionized mesenchymal stem cell-based therapeutics. However, the pharmacokinetics of transplanted cells has been little characterized in their target tissues under healthy or disease condition. A quantitative polymerase chain reaction analytical method with matrix effect was developed to track the biodistribution of human mesenchymal stem cells in normal mice and those with Concanavalin A (Con A)-induced liver injury. Mesenchymal stem/stromal cell (MSC) disposition in blood and different organs were compared, and relevant pharmacokinetic parameters were calculated. Human MSCs (hMSCs) and mouse MSCs (mMSCs) displayed a very similar pharmacokinetic profile in all tested doses: about 95% of the detected hMSCs accumulated in the lung and 3% in the liver, and almost negligible cells were detected in other tissues. A significant double peak of hMSC concentration emerged in the lung within 1-2 hours after intravenous injection, as with mMSCs. Prazosin, a vasodilator, could eliminate the second peak in the lung and increase its Cmax and area under the concentration-time curve (AUC) by 10% in the first 2 hours. The injury caused by Con A was significantly reduced by hMSCs, and the Cmax and AUC0-8 (AUC from time 0 to 8 hours) of cells in the injured liver decreased by 54 and 50%, respectively. The Cmax and AUC would be improved with the alleviation of congestion through the administration of heparin. The study provides a novel insight into the pharmacokinetics of exogenous MSCs in normal and Con A-induced liver injury mice, which provides a framework for optimizing cell transplantation. SIGNIFICANCE STATEMENT: Mesenchymal stem/stromal cells (MSCs) are known for their potential as regenerative therapies in treating several diseases, but an insufficient understanding of the pharmacokinetics of MSCs restricts their future application. The current study was the first to elucidate the pharmacokinetics and possible factors, including dosage, species, and derived sources, in a systematic way. The study further revealed that Concanavalin A-induced liver injury significantly prevented cells from entering the injury site, which could be reversed by the diminished congestion achieved by heparin.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/terapia , Concanavalina A/toxicidade , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Mitógenos/toxicidade , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Immunopharmacol Immunotoxicol ; 43(1): 94-99, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33412981

RESUMO

BACKGROUND: Interleukin (IL)-39 is a novel member of IL-12 family and has been reported to play a pro-inflammatory role in lupus-like mice, but its function in concanavalin A (ConA)-induced liver injury is currently unclear. MATERIALS AND METHODS: In this study, we investigated the effects of IL-39 expression in a mouse model of ConA induced-hepatitis. We first showed that delivery of plasmid DNA encoding mouse IL-39 using the hydrodynamic tail vein injection method increased IL-39 mRNA and protein levels in the liver. We then administrated mice with IL-39 plasmid before ConA injection and measured serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, inflammatory infiltration, and hepatocyte necrosis in the liver. Additionally, we further explored the potential mechanism of IL-39 in ConA-induced liver injury by measuring several inflammatory mediators. RESULTS: We found that ectopic IL-39 expression promoted the ConA-induced increase in serum ALT and AST levels, inflammatory infiltration, and hepatocyte necrosis in the liver. We also observed that IL-39 plasmid administration significantly increased serum and liver interferon-γ, tumor necrosis factor-α, and IL-17A levels, but did not affect serum and liver IL-10 levels in ConA-induced hepatitis. CONCLUSION: Our results suggest that IL-39 can exacerbate ConA-induced hepatitis and may be a therapeutic target in inflammatory liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Concanavalina A/toxicidade , Interleucinas/biossíntese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
14.
J Food Biochem ; 45(3): e13348, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32618005

RESUMO

Global health estimates indicated approximately 322 million people living with depression. Rising cost of depressive illness treatment and non-responsiveness to existing therapies demand continued research to explore new and more potent therapies. Exploring the potential of natural compounds for their potent antidepressant potentials is becoming topic of interest for scientists. Anti-inflammatory activity of thymoquinone, the active ingredient of Nigella sativa, has been well documented. Current study tested thymoquinone for its antidepressant effect in a Concanavalin A (Con A)-induced depressive-like behavior in BALB/c mice. Thymoquinone successfully protected against Con A-induced behavioral despair and anxiety-like behavior. Reduced grooming behavior as a function of Con A treatment, was also reinstated. Underlying mechanism responsible for antidepressant activity of thymoquinone was analyzed by molecular docking. Thymoquinone interacts in halogen-binding pocket (HBP) of serotonin reuptake transporter indicating its potential as serotonin reuptake inhibitor. Results of current study anticipate thymoquinone as a potential antidepressant drug candidate. PRACTICAL APPLICATIONS: Black seeds of Nigella sativa are consumed with traditional and religious reference since centuries. Thymoquinone, active, and abundant component of Nigella sativa, has shown positive effects in multiple studies against arthritis, asthma, hepatic injury, neurodegeneration, and cancer owing to its immunomodulatory and anti-inflammatory attributes. Considering inflammation as one of central components involved in pathophysiology of major depressive disorder, thymoquinone has been evaluated in current study for its antidepressant potential. Positive results of current study propose thymoquinone as an affordable, natural antidepressant drug candidate with better safety profile than currently available antidepressant regimes. Thymoquinone might provide benefits against inflammation-related sickness behavior that is associated with poorer outcome of clinical depression, thus, paving the way for effective drug development against treatment-resistant depression.


Assuntos
Transtorno Depressivo Maior , Animais , Benzoquinonas , Concanavalina A/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Extratos Vegetais
15.
Cell Death Dis ; 11(12): 1044, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298885

RESUMO

Cannabinoid 1 receptor (CB1R) expression is upregulated in the liver with viral hepatitis, cirrhosis, and both alcoholic and non-alcoholic fatty liver disease (FLD), whereas its expression is muted under usual physiological conditions. Inhibiting CB1R has been shown to be beneficial in preserving hepatic function in FLD but it is unclear if inhibiting CB1R during an inflammatory response to an acute hepatic injury, such as toxin-induced injury, would also be beneficial. We found that intrinsic CB1R in hepatocytes regulated liver inflammation-related gene transcription. We tested if nullification of hepatocyte-specific CB1R (hCNR1-/-) in mice protects against concanavalin A (Con A)-induced liver injury. We looked for evidence of liver damage and markers of inflammation in response to Con A by measuring liver enzyme levels and proinflammatory cytokines (e.g., TNF-α, IL-1ß, IL-6, IL-17) in serum collected from hCNR1-/- and control mice. We observed a shift to the right in the dose-response curve for liver injury and inflammation in hCNR1-/- mice. We also found less inflammatory cell infiltration and focal necrosis in livers of hCNR1-/- mice compared to controls, resulting from downregulated apoptotic markers. This anti-apoptotic mechanism results from increased activation of nuclear factor kappa B (NF-κB), especially cAMP-dependent cannabinoid signaling and membrane-bound TNF-α, via downregulated TNF-α receptor 2 (TNFR2) transcription levels. Collectively, these findings provide insight into involvement of CB1R in the pathogenesis of acute liver injury.


Assuntos
Concanavalina A/toxicidade , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Receptor CB1 de Canabinoide/deficiência , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Modelos Biológicos , Ligação Proteica , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
Pharmacol Rep ; 72(4): 945-955, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32048261

RESUMO

BACKGROUND: Acute liver injury (ALI) is a serious health condition associated with rising morbidity and sudden progression. This study was designed to investigate the possible hepatocurative potential of two dose levels (30 and 60 mg/kg) of Mycophenolate mofetil (MMF), an immune-suppressant agent, against Concanavalin A (Con A)-induced ALI in mice. METHOD: A single dose of Con A (20 mg/kg, IV) was used to induce ALI in mice. MMF (30 mg/kg and 60 mg/kg) was administered orally for 4 days post Con A injection. RESULTS: MMF (30 mg/kg) failed to cause significant amelioration in Con A-induced ALI while MMF (60 mg/kg) significantly alleviated Con A-induced ALI. Administration of MMF (60 mg/kg) significantly decreased Con A-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Additionally, MMF significantly restored the disrupted oxidant/antioxidants status induced by Con A. MMF caused marked increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels. Moreover, MMF significantly reduced Con A-induced increase in the expression of hepatic toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1ß (Il-1ß). Also, MMF administration significantly decreased Con A-induced increase in the immune-expression of pro-apoptotic Bcl-2-associated X protein (Bax) and markedly increased Con A-induced decrease in the anti-apoptotic B-cell lymphoma 2 protein (Bcl2). CONCLUSION: The observed ameliorative effect of MMF against Con A-induce ALI may be contributed to its anti-inflammatory, anti-oxidant and anti-apoptotic potentials taking into consideration that TLR4/NF-κB and Nrf2/HO-1 are the main implicated pathways. Schematic diagram summarizing the possible mechanisms underlying the ameliorative potential of Mycophenolate Mofetil against Con A-induced acute liver injury. Bax Bcl-2-associated X protein, Bcl2 B-cell lymphoma 2, MMF Mycophenolate mofetil, Con A Concanavalin A, GSH reduced glutathione, HO-1 Heme oxygenase-1, IL-1ß Interleukin-1ß, IFN-γ Interferon-γ, MDA Malondialdehyde, NF-κB Nuclear Factor Kappa B, Nrf2 Nuclear factor erythroid 2-related factor 2, NO Nitric Oxide, SOD Superoxide Dismutase, TLR4 Toll-like receptor 4, TNF-α tumor necrosis factor-α.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Concanavalina A/toxicidade , Heme Oxigenase-1/biossíntese , Proteínas de Membrana/biossíntese , Ácido Micofenólico/uso terapêutico , Fator 2 Relacionado a NF-E2/biossíntese , NF-kappa B/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Heme Oxigenase-1/antagonistas & inibidores , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ácido Micofenólico/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores
17.
Arch Toxicol ; 94(2): 509-522, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797000

RESUMO

Fulminant hepatitis is a serious inflammatory condition of the liver characterized by massive necrosis of liver parenchyma following excessive immune cell infiltration into the liver, and possibly causing sudden hepatic failure and medical emergency. However, the underlying mechanisms are not fully understood. Here, we investigated the role of cyclic AMP-responsive element-binding protein, hepatocyte specific (CREBH) in concanavalin A (ConA)-driven hepatitis-evoked liver injury. C57BL/6J (WT) and Crebh knockout (KO) mice injected with ConA (7.5 or 25 mg/kg) and bone marrow (BM) chimeric mice, generated by injection of BM cells into sub-lethally irradiated recipients followed by ConA injection (22.5 or 27.5 mg/kg) 8 weeks later, were used for in vivo study. Primary mouse hepatocytes and HEK293T cells were used for a comparative in vitro study. Crebh KO mice are highly susceptible to ConA-induced liver injury and prone to death due to increased neutrophil infiltration driven by enhanced hepatic expression of neutrophil-attracting chemokines. Notably, BM chimera experiment demonstrated that Crebh-deficient hepatocytes have an enhanced ability of recruiting neutrophils to the liver, thereby promoting hepatotoxicity by ConA. Intriguingly, in vitro assays showed that p65, a subunit of NF-κB and common transcription factor for various chemokines, dependent transactivation was inhibited by CREBH. Furthermore, p65 expression was inversely correlated with CREBH level in ConA-treated mice liver and TNFα-stimulated primary mouse hepatocytes. This is the first demonstration that CREBH deficiency aggravates inflammatory liver injury following chemokine-dependent neutrophil infiltration via NF-κB p65 upregulation. CREBH is suggested to be a novel therapeutic target for treatment of fulminant hepatitis.


Assuntos
Quimiocinas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Necrose Hepática Massiva/patologia , Infiltração de Neutrófilos , Fator de Transcrição RelA/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Células HEK293 , Humanos , Masculino , Necrose Hepática Massiva/induzido quimicamente , Necrose Hepática Massiva/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Toxicol Appl Pharmacol ; 382: 114748, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499193

RESUMO

Hepatic iron overload is one of the causative factors for chronic liver injury and fibrosis. The present study aimed to investigate the potential antifibrotic effect of the iron chelator; deferasirox (DFX) in experimentally-induced liver fibrosis in rats. Male Sprague-Dawley rats were administered concanavalin A (Con A) and/or DFX for 6 consecutive weeks. Con A injection induced significant hepatotoxicity as was evident by the elevated transaminases activity, and decreased albumin level. Also, it disturbed the iron homeostasis through increasing C/EBP homologous protein (CHOP), decreasing phosphorylated cAMP responsive element binding protein(P-CREB) and hepcidin levels leading to significant serum and hepatic iron overload. In addition, it induced an imbalance in the oxidative status of the liver via upregulating NADPH oxidase 4 (NOX4), together with a marked decrease in anti-oxidant enzymes' activities. As a consequence, upregulation of nuclear factor-kappa b (NF-κB) and the downstream inflammatory mediators was observed. Those events all together precipitated in initiation of liver fibrosis as confirmed by the elevation of alpha-smooth muscle actin (α-SMA) and liver collagen content. Co-treatment with DFX protected against experimentally-induced liver fibrosis in rats via its iron chelating, anti-oxidant, and anti-inflammatory properties. These findings imply that DFX can attenuate the progression of liver fibrosis.


Assuntos
Concanavalina A/toxicidade , Deferasirox/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/prevenção & controle , Cirrose Hepática/prevenção & controle , Animais , Sobrecarga de Ferro/induzido quimicamente , Sobrecarga de Ferro/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
19.
Nat Commun ; 10(1): 3258, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332204

RESUMO

CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160-/- mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160-/- mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160-/- mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160-/- mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activation.


Assuntos
Antígenos CD/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Células T Matadoras Naturais/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Concanavalina A/administração & dosagem , Concanavalina A/toxicidade , Citocinas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Galactosilceramidas/administração & dosagem , Galactosilceramidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Análise de Sobrevida
20.
Acta Pharmacol Sin ; 40(11): 1404-1411, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30918343

RESUMO

Cannabinoid receptor 2 (CB2R) is highly expressed in immune cells and plays an important role in regulating immune responses. In the current study, we investigated the effects of GW405833 (GW), a specific CB2R agonist, on acute liver injury induced by concanavalin A (Con A). In animal experiments, acute liver injury was induced in mice by injection of Con A (20 mg/kg, i.v.). The mice were treated with GW (20 mg/kg, i.p., 30 min after Con A injection) or GW plus the selective CB2R antagonist AM630 (2 mg/kg, i.p., 15 min after Con A injection). We found that Con A caused severe acute liver injury evidenced by significantly increased serum aminotransferase levels, massive hepatocyte apoptosis, and necrosis, as well as lymphocyte infiltration in liver tissues. Treatment with GW significantly ameliorated Con A-induced pathological injury in liver tissue, decreased serum aminotransferase levels, and decreased hepatocyte apoptosis. The therapeutic effects of GW were prevented by AM630. In cell experiments, we showed that CB2Rs were highly expressed in Jurkat T cells, but little expression in L02 liver cells. Treatment with GW (10-40 µg/mL) dose-dependently decreased the viability of Jurkat T cells and induced cell apoptosis, which was reversed by AM630. In the coculture of Jurkat T cells with L02 liver cells, GW dose-dependently protected L02 cells from apoptosis induced by Con A (5 µg/mL). The protective effect of GW was reversed by AM630 (1 µg/mL). Our results suggest that GW protects against Con A-induced acute liver injury in mice by inhibiting Jurkat T-cell proliferation through the CB2Rs.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Indóis/uso terapêutico , Morfolinas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Receptor CB2 de Canabinoide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A/toxicidade , Humanos , Indóis/farmacologia , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA